shot-button
E-paper E-paper
Home > Lifestyle News > Health And Fitness News > Article > E coli bacteria more capable at evolving antibiotic resistance than previously thought Study

E. coli bacteria more capable at evolving antibiotic resistance than previously thought: Study

Updated on: 27 November,2023 07:47 AM IST  |  New York
IANS |

The real-world implications are significant. If rugged landscapes like this are common in biological systems, it could mean that many adaptive processes, such as antibiotic resistance, may be more accessible than previously thought, the study states

E. coli bacteria more capable at evolving antibiotic resistance than previously thought: Study

Representation Pic

E. coli bacteria may be far more capable at evolving antibiotic resistance than scientists previously thought, according to a new study.


Led by the Santa Fe Institute’s external professor Andreas Wagner, the researchers experimentally mapped more than 260,000 possible mutations of an E. coli protein that is essential for the bacteria’s survival when exposed to the antibiotic trimethoprim.


Over the course of thousands of highly realistic digital simulations, the researchers then found that 75 per cent of all possible evolutionary paths of the E. coli protein ultimately endowed the bacteria with such a high level of antibiotic resistance that a clinician would no longer give the antibiotic trimethoprim to a patient.


“In essence, this study suggests that bacteria like E. coli may be more adept at evolving resistance to antibiotics than we initially thought, and this has broader implications for understanding how various systems in evolutionary biology, chemistry, and other fields adapt and evolve,” said Wagner, an evolutionary biologist at the University of Zurich in Switzerland.

Besides uncovering new and potentially worrisome findings about antibiotic resistance, the researchers’ work also casts doubt on a longstanding theory about fitness landscapes.

These genetic maps represent how well an organism — or a part of it, like a protein — adapts to its environment, said the study published in Science.

Wagner and colleagues used CRISPR gene editing technology to create one of the most combinatorially complete fitness landscapes to date for the E. coli dihydrofolate reductase (DHFR) protein.

What they found was surprising. The fitness landscape had many peaks, but most were of low fitness, making them less interesting for adaptation.

However, even in this rugged landscape, about 75 per cent of the populations they simulated reached high fitness peaks, which would grant E. coli high antibiotic resistance.

The real-world implications are significant. If rugged landscapes like this are common in biological systems, it could mean that many adaptive processes, such as antibiotic resistance, may be more accessible than previously thought.

“This has profound implications not only in biology but beyond, prompting us to reevaluate our understanding of landscape evolution across various fields,” Wagner said.

This story has been sourced from a third party syndicated feed, agencies. Mid-day accepts no responsibility or liability for its dependability, trustworthiness, reliability and data of the text. Mid-day management/mid-day.com reserves the sole right to alter, delete or remove (without notice) the content in its absolute discretion for any reason whatsoever

"Exciting news! Mid-day is now on WhatsApp Channels Subscribe today by clicking the link and stay updated with the latest news!" Click here!

Register for FREE
to continue reading !

This is not a paywall.
However, your registration helps us understand your preferences better and enables us to provide insightful and credible journalism for all our readers.

Mid-Day Web Stories

Mid-Day Web Stories

This website uses cookie or similar technologies, to enhance your browsing experience and provide personalised recommendations. By continuing to use our website, you agree to our Privacy Policy and Cookie Policy. OK