shot-button
Podcast Banner	Podcast Banner
Home > Lifestyle News > Health And Fitness News > Article > Researchers shed light on the gene that increases muscular strength during exercise

Researchers shed light on the gene that increases muscular strength during exercise

Updated on: 27 July,2022 01:43 PM IST  |  Mumbai
ANI |

The study published in the journal 'Cell Metabolism' showed how different types of exercise change the molecules in our muscles, resulting in the discovery of the new C18ORF25 gene that is activated with all types of exercise and responsible for promoting muscle strength

Researchers shed light on the gene that increases muscular strength during exercise

Representational images. Pic/iStock

Researchers have discovered a gene that enhances muscular strength when activated by physical activity, opening the door to the creation of therapeutic therapies that mirror some of the advantages of exercise. The findings of the research were published in the journal 'Cell Metabolism'.


The study showed how different types of exercise change the molecules in our muscles, resulting in the discovery of the new C18ORF25 gene that is activated with all types of exercise and responsible for promoting muscle strength. Animals without C18ORF25 have poor exercise performance and weaker muscles.


Project lead Dr Benjamin Parker said by activating the C18ORF25 gene, the research team could see muscles become much stronger, without them becoming necessarily bigger.


"Identifying this gene may impact how we manage healthy aging, diseases of muscle atrophy, sports science, and even livestock and meat production. This is because promoting optimal muscle function is one of the best predictors of overall health," Dr Parker said.

"We know exercise can prevent and treat chronic diseases including diabetes, cardiovascular disease, and many cancers. Now, we hope that by better understanding how different types of exercise elicit these health-promoting effects at the molecular level, the field can work towards making new and improved treatment options available."

In the study, a collaboration between Dr Parker and Professors Erik Richter and Bente Kiens of the University of Copenhagen, Denmark, the team was able to identify the molecular similarities and differences between different types of exercise in human muscle biopsies by analyzing proteins and how they change within cells.

"To identify how genes and proteins are activated during and after different exercises, we performed an analysis of human skeletal muscle from a cross-over intervention of endurance, sprint, and resistance exercise," Dr Parker said.

The experimental design allowed researchers to compare signaling responses between the exercise modalities in the same individual, relative to their pre-exercise level. This meant they could monitor how an individual responded to different types of exercise directly in their muscles.

Importantly, it also allowed the study team to identify genes and proteins that consistently change across all individuals and all types of exercise, leading to the discovery of the new gene.

Also read: Mr Muscle has a problem

This story has been sourced from a third party syndicated feed, agencies. Mid-day accepts no responsibility or liability for its dependability, trustworthiness, reliability and data of the text. Mid-day management/mid-day.com reserves the sole right to alter, delete or remove (without notice) the content in its absolute discretion for any reason whatsoever

"Exciting news! Mid-day is now on WhatsApp Channels Subscribe today by clicking the link and stay updated with the latest news!" Click here!

Register for FREE
to continue reading !

This is not a paywall.
However, your registration helps us understand your preferences better and enables us to provide insightful and credible journalism for all our readers.

Mid-Day Web Stories

Mid-Day Web Stories

This website uses cookie or similar technologies, to enhance your browsing experience and provide personalised recommendations. By continuing to use our website, you agree to our Privacy Policy and Cookie Policy. OK